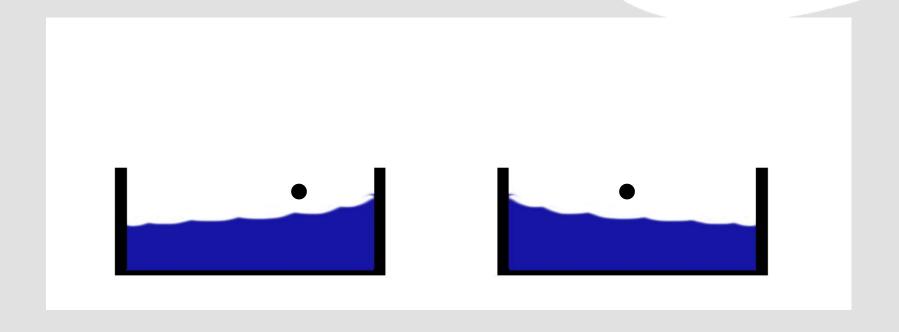
ONSITE TREATMENT

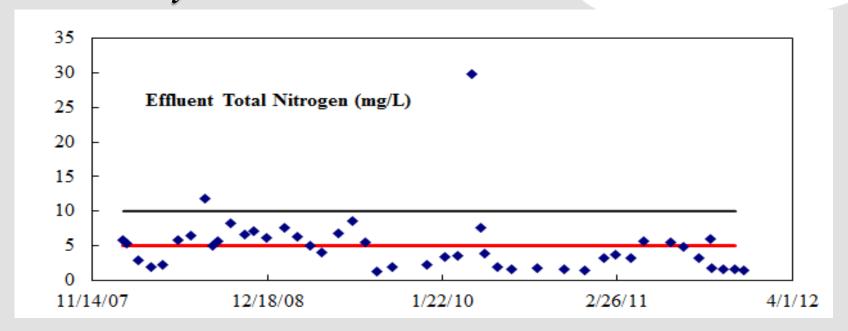
Amphidrome®

frma


Agenda

- System Description
- Installation
- Locations
- Performance
- Questions

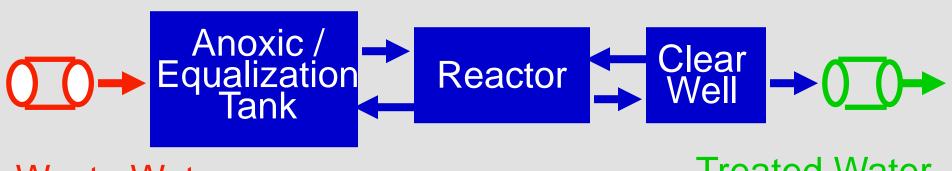
$Amphidrome^{\mathbb{R}}$


- Definition in Oceanography
 - The position in the ocean where the tide vanishes to zero

$Amphidrome^{\mathbb{R}}$

- Definition in Wastewater
 - A submerged attached-growth bioreactor
 (SAGB) in which the nitrogen vanishes to nearly zero

Amphidrome® Process Description


- Biological Nutrient Removal (BNR) Process
 - -TSS
 - $-BOD_5$
 - Total Nitrogen
 - Oil and Grease
- One Reactor
 - A submerged attached growth bioreactor (SAGB) operating in sequencing batch mode
 - SAGB is also commonly referred to as a BAF (biological aerated filter).

System Consists Of 2 Tanks And 1 Reactor

Anoxic / Equalization Tank

• Amphidrometm Reactor

Clear Well Tank

Waste Water

Treated Water

Anoxic/Equalization Tank

- Solids settling
- Sludge storage
- Secondary functions
 - Buffers the dissolved oxygen in the recycled flow
 - Mixes recycle with influent organic carbon to promote de-nitrification

frma

Main Reactor Function

- Media provides the surface area for biofilm growth
- Provides solids separation, eliminating the need for downstream clarification
- Intermittent aeration
 - Typically 3 minutes on 15 minutes off

Clearwell Function

- Stores batch volume
- Stores some fraction of backwash volume
- Contains backwash and effluent pumps (or PlusTM feed pumps)

Controls

Control Panel

- Touch Screen
- Remote Access
- Operator Can'tune' the system

Amphidrome® System Benefits

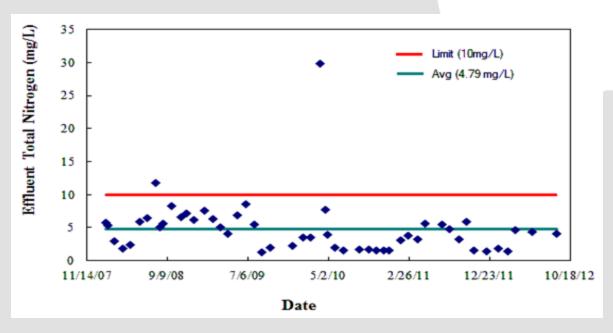
- Highest Level of Nitrogen Removal of any system available
- Low Visual Impact
- Not affected by air temperature as are trickling filters
- All effluent filtered through deep sand bed to protect SAS

Installation

Three-tank system

Where can you find us?

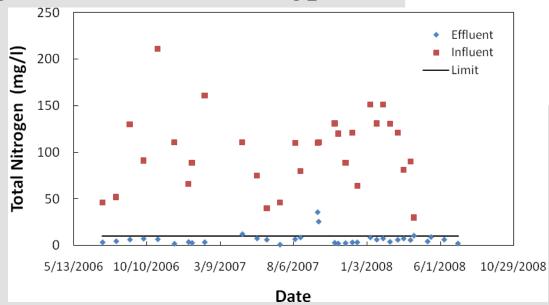
- New England
- Pennsylvania
- North Carolina
- Maryland
- Minnesota
- Internationally



• Plant: Pleasant Bay Nursing Home

• Location: Brewster, MA

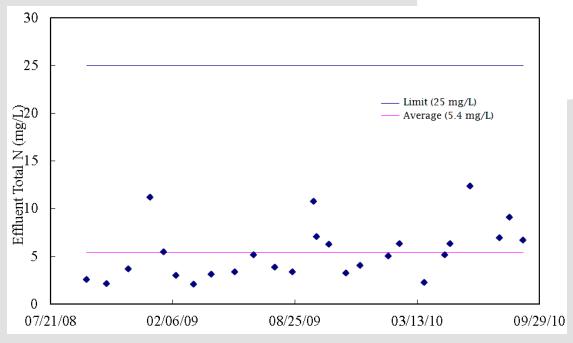
• Design Flow: 26,500 gpd


	BOD ₅	TSS	Total N
Permit Limit	30 mg/L	30 mg/L	10 mg/L
Average	5.07 mg/L	6.3 mg/L	4.79 mg/L

• Plant: Daniel Hand High School

Location: Madison, CT

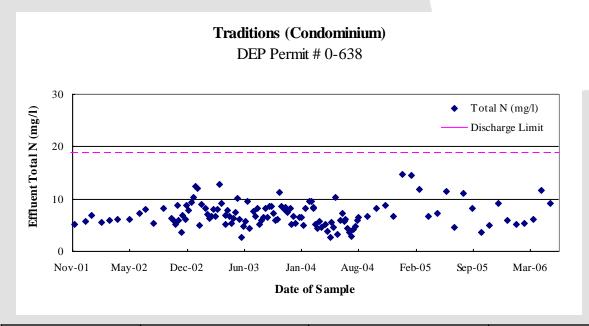
• Design Flow: 25,000 gpd


	BIOCHEMICAL OXYGEN DEMAND	TOTAL SUSPENDED SOLIDS	TOTAL NITROGEN
INFLUENT	174 mg./L.	137 mg./L.	90 mg./L.
EFFLUENT	9.5 mg./L.	8.2 mg./L.	6.8 mg./L.
PERMIT LIMIT	30 mg./L.	30 mg./L.	10 mg./L.

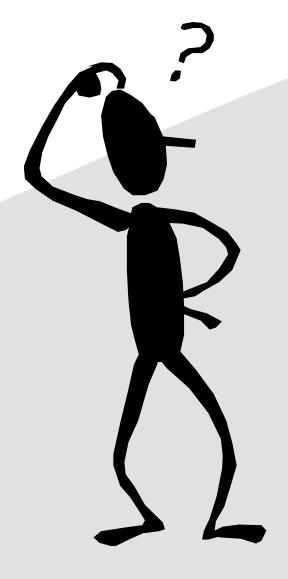
• Plant: Chili's Resturant

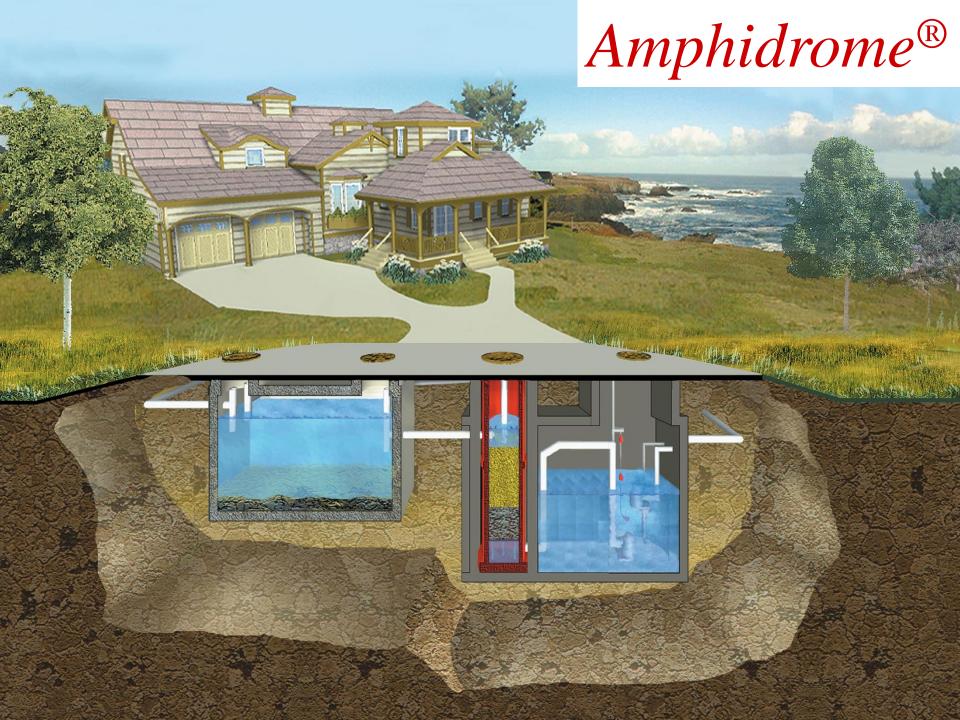
• Location: Hingham, MA

Design Flow: 7,670 gpd


	BOD ₅	TSS	Total N
Permit Limit	30 mg/L	30 mg/L	25 mg/L
Average	4.9 mg/L	8.2 mg/L	5.4 mg/L

• Plant: Traditions Condos


• Location: Wayland, MA


• Design Flow: 10,320 gpd

	BIOCHEMICAL	TOTAL SUSPENDED	TOTAL
	OXYGEN DEMAND	SOLIDS	NITROGEN
PERMIT LIMIT	30 mg./L.	30 mg./L.	19 mg./L.
EFFLUENT	10.22 mg./L.	15.34 mg./L.	7.04 mg./L.

Questions

frma

Process Chemistry

Biochemical Transformations

$$-NH_4^+ + 3.30 O_2 + 6.708 HCO_3^- \Rightarrow 0.129 C_5H_7O_2N + 3.373 NO_3^- + 1.041 H_2O + 6.463 H_2CO_3$$
 (aerobic)

$$-NO_3^- + 0.324 C_{10}H_{19}O_3N \Rightarrow 0.226 N_2 + 0.710 CO_2 +$$

$$-0.087 \text{ H}_2\text{O} + 0.027 \text{ NH}_3 + 0.274 \text{ OH}^-$$
 (anoxic)

BNR - Process Chemistry

Oxidation of Carbonaceous BOD:

Oxidation:

 $COH + O_2 + Bacteria \Rightarrow CO_2 + other end products + energy organic matter$

Cell Synthesis:

COHNS $+ O_2 + Bacteria + energy \Rightarrow C_5H_7NO_2$ organic matter new bacterial cells

Endogenous Respiration

 $C_5H_7NO_2 + 5O_2 \Rightarrow 5CO_2 + NH_3 + 2H_2O + energy$

Process Chemistry

Oxidation of Nitrogen Based Compounds

$$NH_4^+ + 3/2 O_2 \implies NO_2^- + 2H_4^+ + H_2O$$

ammonium nitrite

Nitrosomonas Bacteria

$$NO_2^- + 1/2 O_2 \Rightarrow NO_3^-$$

nitrite nitrate

Nitrobacter

Overall Energy Reaction:

$$NH_4^+ + 2O_2 \Rightarrow NO_3^- + 2H_4^+ + H_2O$$

ammonium nitrate

Process Chemistry - Continued

•Reduction of Nitrite & Nitrate:

The nitrate reducing bacteria are facultative anaerobic heterotophs. Therefore, an organic carbon source is required. For the following equations methanol has been used as the carbon source.

First Energy Reaction:

$$6 \text{ NO}_{3}^{-} + 2 \text{ CH}_{3}\text{OH} \implies 6 \text{ NO}_{2}^{-} + 2 \text{ CO}_{2}^{-} + 4 \text{ H}_{2}\text{O}$$

nitrate methanol nitrite

Second Energy Reaction:

```
6 \text{ NO}_2^- + 3 \text{ CH}_3\text{OH} \Rightarrow 3 \text{ N}_2^- + 3 \text{ CO}_2^- + 3 \text{ H}_2\text{O}^- + 6 \text{ OH}_2^-
nitrite methanol nitrogen gas
```


Process Chemistry - Continued

Heterotrophic Cell Synthesis:

$$3 \text{ NO}_3^- + 14 \text{ CH}_3\text{OH} + \text{CO}_2^- + 3 \text{ H}^+ \Rightarrow 3 \text{ C}_5\text{H}_7\text{O}_2\text{N} + \text{H}_2\text{O}$$

nitrate methanol Biomass

Overall Nitrate Removal

 $NO_{3}^{-} + 1.08 \text{ CH}_{3}\text{OH} + 3 \text{ H}^{+} \Rightarrow 0.065 \text{ C}_{5}\text{H}_{7}\text{O}_{2}\text{N} + 0.47 \text{ N}_{2} + 0.76 \text{ CO}_{2} + \text{H}_{2}\text{O}$ nitrate methanol Biomass