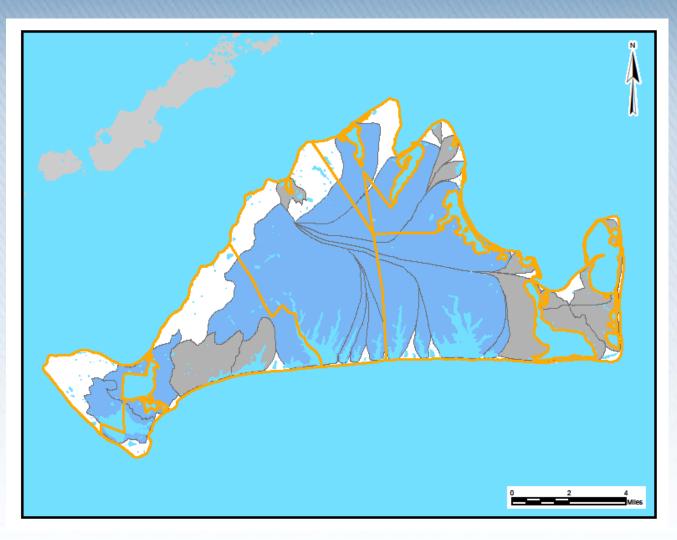
Cleaning Up Our Waters

How Can Martha's Vineyard Towns Incorporate Non-Traditional Approaches into Their Nitrogen Management Plans?

Martha's Vineyard Innovative-Alternative Conference: 12 May 2016


Presented by: Michael Giggey, PE

Island Watersheds

Martha's Vineyard Shared Watersheds

The Setting—Martha's Vineyard

- 6 towns make up Dukes County
- 14,000 developed parcels (88% on septic)
- 3 "centralized" wastewater treatment facilities
 0.1 mgd to 0.75 mgd
- 2 satellite treatment plants 20,000 gpd to 40,000 gpd
- Many enhanced on-site systems
- Off-island septage treatment disposal
- Surface water discharges are prohibited

The Setting—Martha's Vineyard

Land area, acres N-sensitive watersheds 40,300 (71%) 4,300 (7%) P-sensitive watersheds Open ocean discharge 12,400 (22%) 75% of N-sensitive watersheds are shared by 2 to 4 towns Zone II area 8,900 acres 16% of total land area

Sources of Nitrogen

- The nitrogen "driver" = surface water impacts from nutrient overloading
- Nitrogen loads
 - Septic systems
 - Fertilization of lawns and golf courses
 - Stormwater disposal
 - Atmospheric deposition
 - Sediment release

Today's Key Question

What is the best way to protect a coastal embayment from nitrogen overloading? Is it to:

- Rely on traditional approaches?, or
 Use non-traditional systems that
 - may allow faster, cheaper nitrogen control?

Presentation Overview

Describe the "wastewater/nitrogen setting" on Martha's Vineyard Identify the issues that must be addressed to implement new technologies **Discuss pros/cons of remediation** Present a framework for evaluation

Important Terms

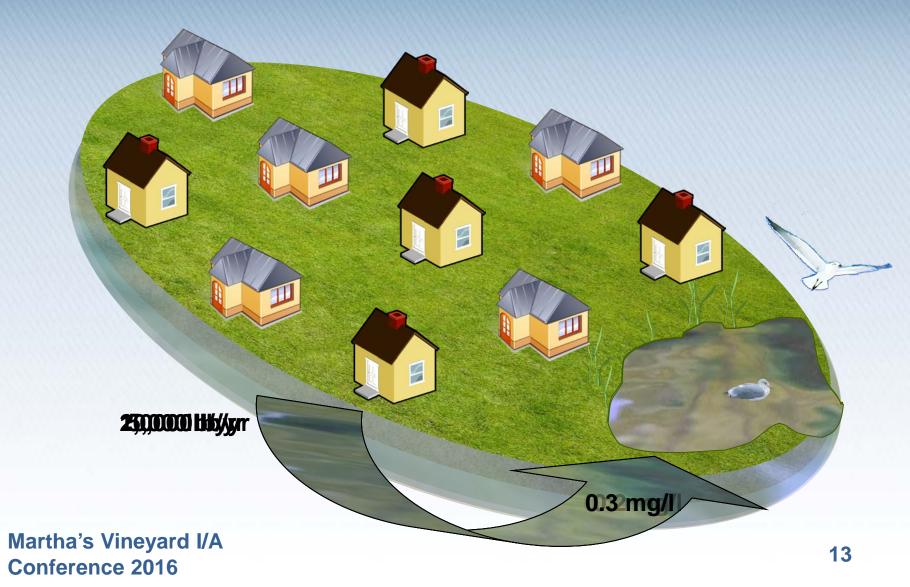
Traditional vs. non-traditional Proven vs emerging? Structural versus non-structural Construction vs. regulation? Centralized vs. decentralized One large solution or multiple dispersed solutions?

Traditional Approaches

Eliminate/reduce septic nitrogen by:

- Adding denite to existing septics
- Installing sewers leading to centralized treatment plant
- Installing sewers leading to decentralized facilities

Adopt nitrogen control regulations Provide for stormwater treatment


Examples of Non-Traditional Approaches

Install "eco toilets" (new, retrofit) Widen inlets of coastal ponds Propagate shellfish Use hydroponics Build permeable reactive barriers

Examples of Non-Traditional Approaches

Irrigate turf with effluent or groundwater Install constructed wetlands Build urine diversion facilities Use pond mixing to eliminate stratification Restore estuarine habitat

Relative Nitrogen Thresholds

Types of Nitrogen Control

- 1. Prevention
 - Prevent N-using activity
- 2. Source Control
 - N removed prior to reaching groundwater
- 3. Remediation
 - N removed from groundwater or coastal pond

Where does the N Removal Occur?

- 1. At the source (before reaching groundwater)
- 2. In the groundwater
 - before it reaches the property line
 - after the property line but before it reaches the coastal pond
- 3. In the coastal pond

Key Aspects of Traditional Approaches

- 1. Very predictable results
- 2. Straightforward permitting
- 3. Generally costly
- 4. May allow economies of scale
- 5. Typically involve
 - Prevention
 - Source control

Key Aspects of Traditional Approaches

- 6. Often address only septic N
- 7. Must be designed for summer peak
- 8. Amendable to public-private partnerships
- 9. Can be easy to measure N removal

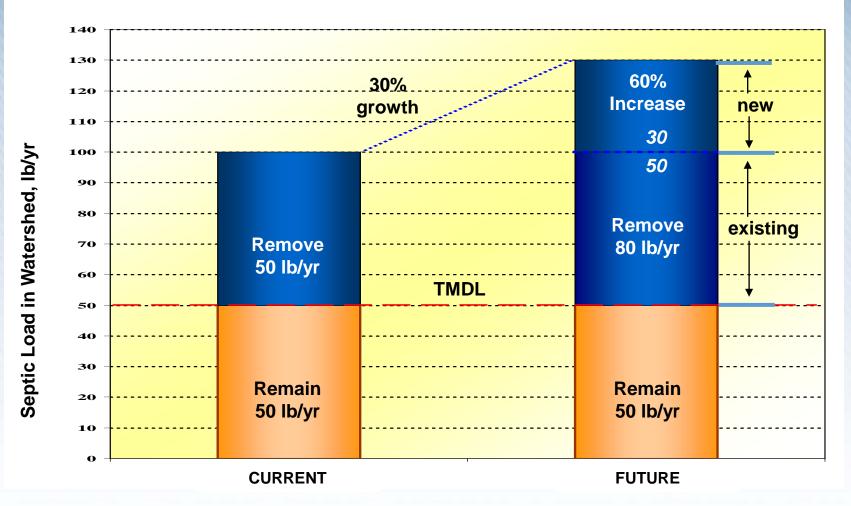
Key Aspects of Non-Traditional Approaches, especially Remediation

- 1. Faster impacts on coastal ponds
- 2. Can address all N in groundwater, not just septic N
- 3. Generally less proven
- 4. "Permittability" often an unknown
- 5. N removal may be hard to measure
- 6. May be influenced by uncontrollable natural factors

Key Aspects of Non-Traditional Approaches, especially Remediation 7. Will need back-up plan More of non-traditional technology? **Traditional back-up** 8. Risk of under-performance 9. Less susceptible to seasonal peaks 10. Likely to need demonstration testing

How Proven is the Approach?

- 1. Ready for immediate implementation
- 2. Requires large local demonstration
 - Enough benefits to defer traditional technologies
 - Concurrent with phase traditional approach
- 3. More experience needed even before large demonstration


Non-Structural Approaches

- N Load regulations that limit
 - aggregate annual load lbN/ac/yr
 - Bedroom count --- 1 BR/10,000sf
- Fertilizer control bylaws
- Set-aside of vacant land
 - Purchase
 - Acquire development rights
- No-Net-Nitrogen regulations

Future N Loads

- Remember 2 parts of N control equation:
 - 1. Remove X% of current load
 - 2. Remove 100% of "new" load
- Controlling future load may be as much of a cost burden as current load, if high growth rates are expected

Impact of Growth on N Removal

Recent Cost Comparisons

Comparison of Costs for Wastewater Management Systems Applicable to Cape Cod

Barnstable County Wastewater Cost Task Force April 2010

Cost Calculation Example

Capital Cost Amortized Capital Cost (5%, 20-yr) **O&M** Cost Equivalent **Annual Cost** Nitrogen Load Removed **Unit Cost** Martha's Vineyard I/A

Conference 2016

\$31 M \$2.5 M/yr \$0.5 M/yr \$3.0 M/yr 8,700 lb/yr \$350 / lb N

"Life Cycle" Costs

Must consider 20-year life cycle costs Contrast options that are: High Capital and low O&M Low Capital and high O&M Use \$/lbN metric **Remember Monitoring Costs**

Wastewater Costs Report

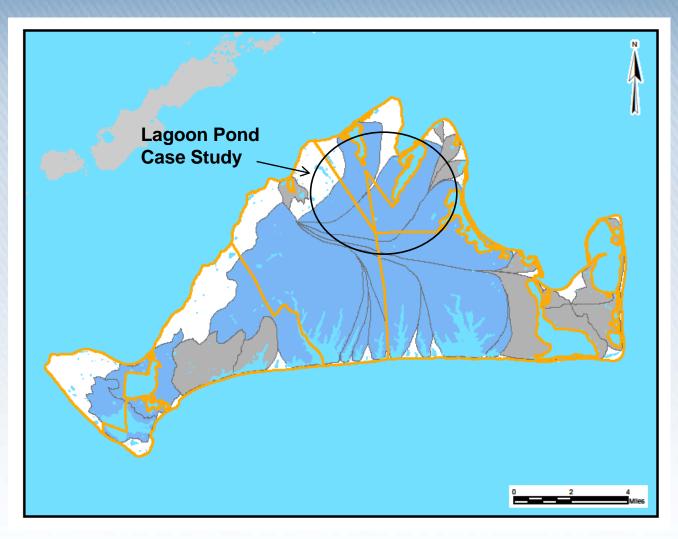
Electronic copy of report is available on the website of the Water Protection Collaborative

www.ccwpc.org

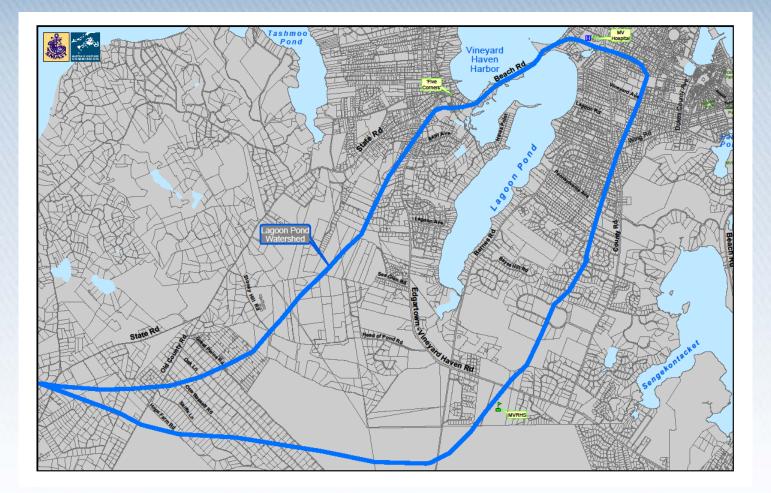
Technology Assessment Matrix

Formalize the evaluation of new technology considering two important issues:

- 1. Where does the N removal occur?
 - 1. source control
 - 2. remediation
- 2. How mature is technology in terms of:
 - 1. permittability
 - 2. need for demonstration
 - 3. need for traditional back-up


Technology Assessment Matrix

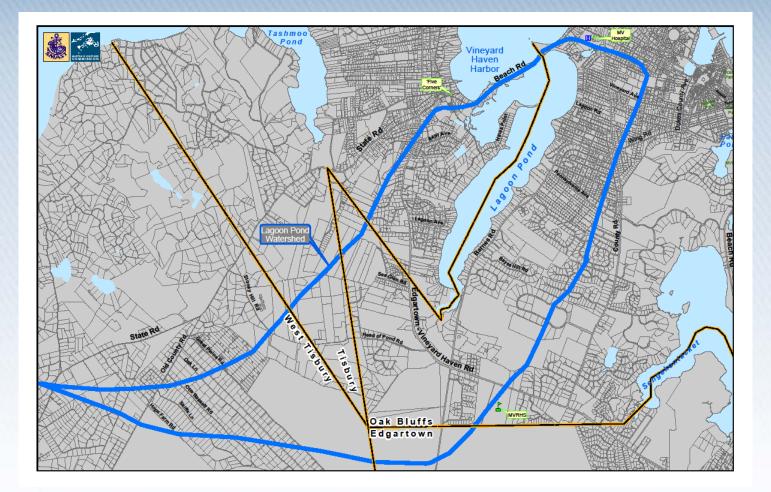
	Applicability to Near-Term TMDL Compliance			
Location of N Removal	Not Applicable to Cape/Islands Situation	Applicable as an Addition to an Ongoing Phased Plan after Further Study	Sufficiently Applicable to Allow Deferral of Traditional Approaches	Ready for Immediate Application as Primary Remedy
Prevent Future N Loads				
Remove N Before Reaching Groundwater				
Remove N from Groundwater Before Reaching Embayment				
Increase Embayment's Assimilative Capacity for N				
Remove N from Embayment Water Column				


Comments and Questions

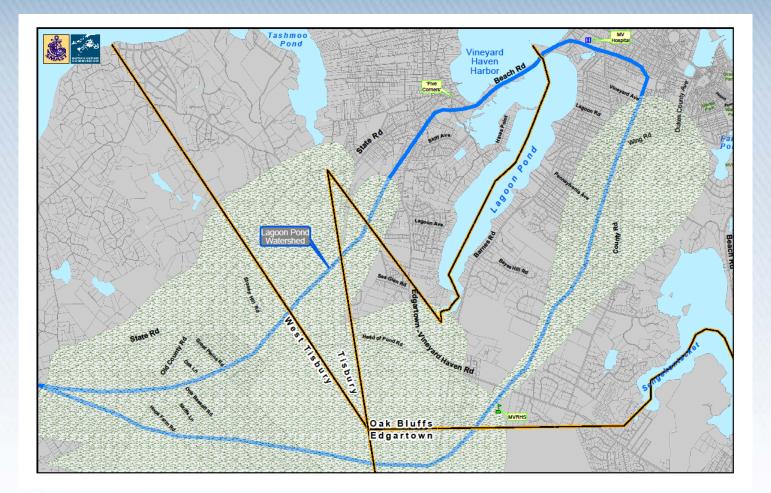
mdg@wright-pierce.com

Lagoon Pond Case Study

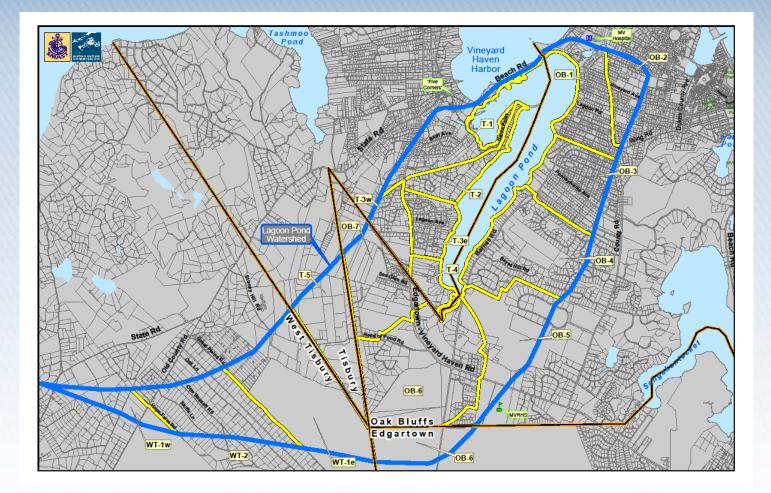
Lagoon Pond Watershed



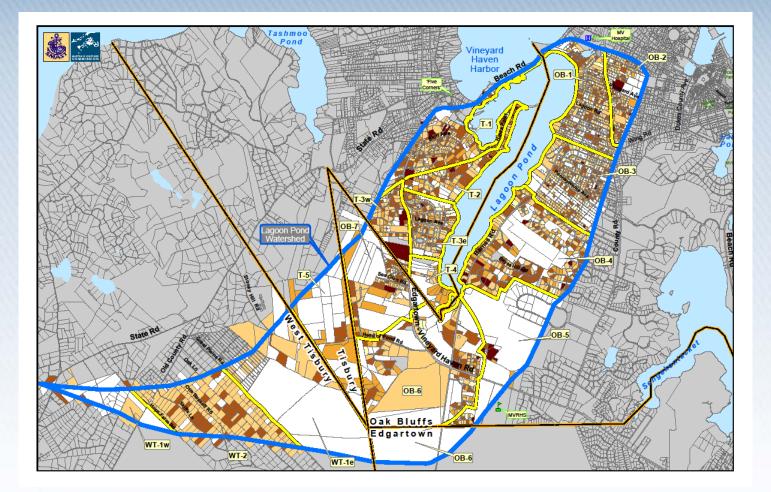
Lagoon Pond Water Quality


Current watershed N load **Current septic N load** Threshold watershed N load N load to be removed Septic removal need Current wastewater flow Septic flow to be eliminated

37,700 lb/yr 27,700 lb/yr 24,600 lb/yr 13,100 lb/yr 47% 354,000 gpd 165,000 gpd

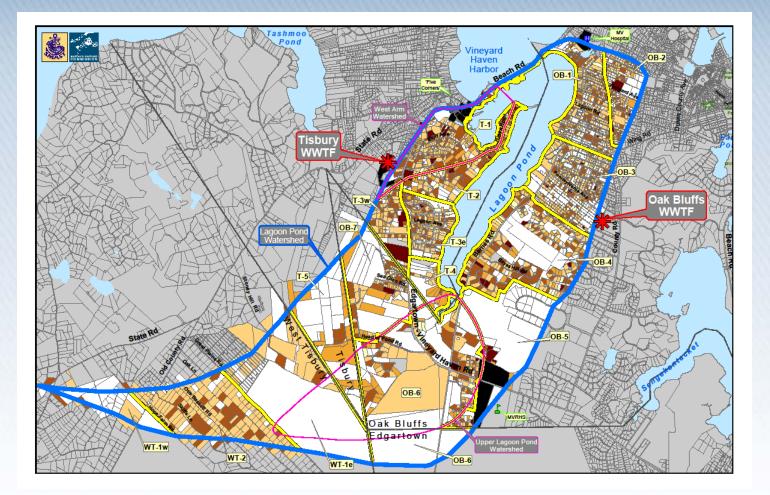

Town Boundaries

Water Supply Recharge Areas


Neighborhoods

Neighborhood Statistics

Development density, road ft per lot OB2: 78 T1: 91 WT1: 340 T5: 310 Distance to shore, miles T4: 0.08 OB1: 0.11 T5: 0.98 WT2: 2.19 Percentage of homes that are year-round OB6: 73% T5: 75% T4: 50% OB4: 47%


Distribution of Nitrogen Loads

Neighborhood Statistics

Wastewater density, gpd per lot OB5: 510 T5: 410 WT2: 160 T4: 140 Nitrogen density, lb/yr per lot T5: 32 OB5: 41 T4: 12 WT2: 13

Treatment Plant Locations

Existing Wastewater Infrastructure

Oak Bluffs WWTFDesign capacity37Current summer flows24Tisbury WWTF10Design capacity10Current summer flows7

370,000 gpd 240,000 gpd

104,000 gpd 70,000 gpd

Lagoon Pond Options

- 1. Sewers and treatment only in Oak Bluffs
- Sewer all of Tisbury watershed (113,000 gpd) and some of Oak Bluffs (52,000 gpd) with treatment at both plants
- 3. Sewers and treatment in all 3 towns proportional to current N load
 Oak Bluffs 100,000 gpd
 Tisbury 49,000 gpd
 West Tisbury 17,000 gpd

Lagoon Pond – Preliminary Costs

- Sewer and treatment only in Oak Bluffs \$250/lb N
- 2. Sewer all of Tisbury watershed (110,000 gpd) and some of Oak Bluffs (50,000 gpd) with treatment at both plants

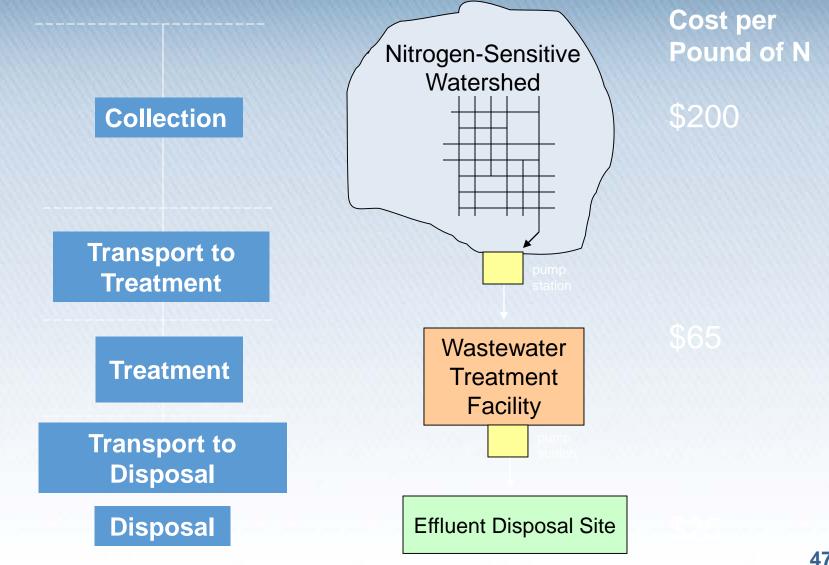
\$275/lb N

3. Sewers and treatment in all 3 towns proportional to current N load \$300/lb N

Lagoon Pond – Other Factors

- 1. Some of Tisbury's discharge may reach Lagoon Pond
- 2. West Tisbury has no wastewater infrastructure
- 3. Oak Bluffs is already preparing to expand
- 3. New Oak Bluffs disposal area is in a water supply Zone II
- 4. Each Town has other N control needs

Collection Needs by Watershed


Nitrogen control needs, gal/day

Lagoon Pond Oak Bluffs Harbor Edgartown Great Pond Chilmark Pond Tisbury Great Pond Sengekontacket Pond All others Total $165,000 \\ 111,000 \\ 68,000 \\ 67,000 \\ 65,000 \\ 51,000 \\ 111,000 \\ 638,000$

Collection Needs by Town

Nitrogen control needs, gal/day **Oak Bluffs** 263,000 140,000 Edgartown Chilmark 87,000 West Tisbury 81,000 54,000 Tisbury Aquinnah 13,000 Total 638,000

Elements of a Wastewater System

Growth in Wastewater Flows

Growth percentages by town: **Oak Bluffs** 32% Tisbury 52% West Tisbury 60% Edgartown 65% Chilmark 81% 104% Aquinnah

Wastewater Management Structures

Candidate structures:

- Individual towns acting alone
- Host town and customer town
- Single regional public entity
- Wastewater/nutrient manag. district
- Single regional private entity
- Combined water and wwr. entity
- Regional health district

Wastewater Management Structures

Evaluative criteria:

- Ease in implementation
- Political acceptability
- Set-up costs and long-term savings
- Ability to assess fees
- Impact on community growth
- Ability to garner grants and loans
- Public accountability